
EXAMINING ROO M

S
tarting OS/2 for the first time was,
for me, like unlocking a Ferarri,
sitting behind its wheel and find­
ing a Yugo's dash. What a disap­
pointment. Sure, the engine and

suspension were first rate, but the con­
trols were minimal, the clutch was stiff,
and the pedals were nonresponsive!
OS/2 comes with great stuff, but CMD
.EXE, the default command-line pro­
cessor, is poor compared to the pow­
erfuloperating system beneath. CMD.EXE
appears to be a port of the MS-DOS
COMMAND.COM and lacks the major
features of a serious front end.

Fortunately, there's a tool that fills
this gap. The Hamilton C Shell is a
collection of programs that takes ad­
vantage of OS/2 features to create a
faster, more powerful environment for
serious OS/2. users. The Hamilton C
Shell efficiently uses OS/2 to imple­
ment a superset of the C shell environ­
ment used in the Berkeley flavor of
Unix. The Shell supports a powerful
script language borrowing C's con­
structs.

C Shell for OS/2
The Hamilton C Shell is not a quick
port of a Unix shell from another sys­
tem. The Shell was created from scratch,
implemented with modem compiler tech­
nology, and designed to fully take ad­
vantage of the powerful OS/2 architec­
ture, including HPFS (high-performance

Scott is an independent software con­
sultant specializing in systems and ap­
plications programming under ViliS,
Unix, DOS, and the Macintosh. He can
be reached at R.R. 3, Box 3471;
Susquehanna, PA 18847.

Dr. Dobb'sjournal,january 1991

Examining the
Hamilton C Shell

Unix power for OS/2

Scott Richman

file system), long filenames, and threads.
Additionally, the Shell supports large

command lines and pipes (up to 64K)
and includes faster and more powerful
utilities than those supplied with OS/2.
This is more than Unix - this is a pow­
erful requirement for development un­
der OS/2. The ability to execute C shells
simultaneously in different Presenta­
tion Manager (PM) text windows con­
verts your PC into a flexible workstation.

The Hamilton C Shell comes with
many programs and shell scripts. To
install the Shell, you simply copy the
files to their new home, and modify
your CONFIG.SYS. The Shell program,
CSH.EXE, can be executed in a text
window of the PM or as a non-PM
character-mode application.

Scripts
Scripts allow you to program the many
commands and features with full sup­
port for complex logic, looping, nested
control statements, and symbols. Scripts
are composed of C Shell commands,
OS/2 programs, and comments pre­
fixed by the pound character (#).

This combination can produce po­
tent applications. Scripts can be com­
posed and tested interactively at the
command level or typed into files and
run later. The Shell assumes that files
with extensions of .CSH are C Shell
script files. Scripts can read user input
and can be used recursively.

For example, Listing One (page 106)
presents CTL_T.CSH, a script to send a
Ctrl-T to COM1: every 400 seconds. It's
useful when logged onto a busy termi­
nal server that impatiently bumps you
off when there's no activity. Invoking
this sCript, using ctLt &, will execute it

in the background and the server will
be kept busy.

Supporting Procedures
Script programmers can create C Shell
procedures, which are more like func­
tions: They accept a parameter list and
return a value. These procedures are
compiled into C Shell memory and are
then executed as new shell commands.
Procedures can greatly extend the
power and flexibility of your environ­
ment.

As an example, consider ZCW.CSH
(Listing Two, page 106), which is used
to build a C++ PM program. ZCW.CSH
defines a procedure that receives a file­
name as its parameter. The script calls
the procedure at the end: The Shell
reads the file once, compiles the proce­
dure and executes the compiled code
from that point on. In other words, the
zcw procedure is now treated like an­
other C Shell command.

Listing Three (page 106) shows the
global edit procedure ged, which can
be used to globally edit several files.
For instance, you can edit all .H files
and change your last name from "Love­
joy" to "Stern," using the command
ged slLovejoylSterni *.h. As with zcw,
the Shell reads and compiles the proce­
dure and executes ged as it would any
other C Shell command.

Variables
Users can create local, environmental,
and C shell global variables. These sym­
bols can contain any text representing
pathnames, strings, numbers, and so
on, which can be referred to by the
other Shell components. Long path­
names, for instance, could be stored

1

EXAMINING ROO M

in variables and used in a command
line to refer to the target location. To
define a variable, use the set command
(set a = "this is a ")' To have the Shell
calculate an expression, use @ instead
of set.

used to format variables. There are also
provisions to scan strings for substrings,
concatenate variables, and return string
lengths.

The Shell is also flexible in treating
symbols as numbers and will allow
complicated arithmetic calculations. The
Shell handles integer and floating-point
arithmetic and supports C-like calcula­
tions, evaluations and expressions, in­
cluding switch and case. Variables can
be tested for patterns using the Unix
pattern-matching expressions.

Additionally, variables can be arrays
with full support for C-style subscript­
ing of the elements. The Shell makes it
easy to access the words which make
up a variable. The Shell supplies many
internal variable functions to test and
manipulate the text within a symbol.
The prinif function, for example, is

Taking Command
Command Description

! • Inserts the first argument
(or word) of the last line.

! • Inserts all the arguments
of the last line.

! ! Inserts the previous
line.

Table 1: History recall commands

The Shell has full command history. It
remembers previous command lines,
which can be recalled through many
different methods. Besides using the
up and down arrow keys to recall past
lines, you can recall a previous com­
mand line (or specific parts of it) by
command sequence number, or you
can recall the last command which con­
tained a specific string. Groups of com­
mand lines can be saved into a text file
and later read back into another ses-

Utility

Cut

Oiff

Strings

xd

More

Ls

Vniq

Fgrep and grep

Tail

Sed

Description

Outputs specific parts of each line of its input, and allows you to
specify the character positions and/or the field numbers to include.

Compares files or directories, and can be instructed to ignore case
and spaces. Oiffcan recursively compare the contents of two directo­
ries. You can also define the minimum match length to insist on.

Searches binary files and displays the ASCII strings found within
them. Strings is quite handy for finding the strings embedded within
a program or database.

Dumps the contents of its input to stdout. This wonderful dump utility
can display its input by bytes, words, long words, or floating-point
values. xd is fluent in decimal, hex, oct, and even other user-supplied
radixes. xd can be told the offsets at which to begin (and end) its
dump.

Flexible full-screen file browser. More will scroll up and down, and
search for text and line numbers. It can also format lines with octal
and hex values. C programmers will appreciate the feature of display­
ing the \n\r escape sequences.

The ultimate DIR program that specifies types of files and displays file
information in many different sorted orders. Ls can also display
file-size totals. The program will, if told, recursively search the direc­
tory structure.

Displays the duplicate or nonduplicate lines found in a given file.

Searches files (or standard input) for specific occurrences of text.
grep works with regular expressions which can help find approxi­
mated text strings.

Shows the end of a file. If, however, the file is growing (another
process or thread is expanding it), it can continue to show the growing
file. I find tail indispensable for logging downloads while I am free to
work in another window.

A stream editor -a filter which outputs an edited version of its input.
Sed will replace strings, convert characters, delete text and insert
text. Sed will work by ranges of line numbers or regular expressions.

Table 3: My favorite C Shell utilities

2

sion. The saved command lines can
be edited by your favorite text editor
and then submitted to the Shell as a
script. The Berkeley history mechanism
supplies many nifty ways to access parts
of previous command lines. When a
command line contains /$, the Shell
inserts the last word Cargument) of the
previous command line: Repeated se­
quences of commands to the same file
(such as edit, compile, link and print)
are executed faster and with fewer ty­
pos because the argument is never re­
typed. Some of the other history-recall
commands are shown in Table 1.

The Shell lets you define aliases,
which allow you to abbreviate or re­
name any command. Complicated com­
mand lines are much easier to work
with when they are defined by an alias.
Once an alias is defined, it can be used
as another command.

Because the C Shell furnishes many
ways to group commands together on
the same command line, the Enter key
has much more power than under con­
ventional PC systems. Command lines
ending with an ampersand (&) will be
executed in the background. The PS
command will show the currently ac­
tive processes and threads created by
the Shell and their command lines, while
the Kill command can terminate any
job shown by PS, making it easy to
manage a multithreaded system. On
my wish list of future enhancements,
however, is a feature that will display
and manipulate the priority of a thread.

File and Command Accessibility
The Shell controls command-name pars­
ing through efficient hashing techniques
and sophisticated OS/2 features. File­
names are expanded within the com­
mand line with greater speed and flexi­
bility than under OS/2. For example,
when you press the Alt/Ctrl key combi­
nation, the Shell will complete a par­
tially typed me or command name in the
current command line. These features
save much time and ensure more accu­
racy by reducing unnecessary typing.

C Shell supports full Unix filename
wildcarding, to provide a very flexible
means of describing groups of files.
Subdirectories can also be wildcarded.
The asterisk C*) and question mark (?)
can represent any character except the
colon (:) and backslash (\). However,
the period between the filename and
its extension is no longer sacred. A
wildcard expression of' .[ch] will trans­
late into all files with either .C or .H
extensions. Square brackets declare a
list of characters which can match one
character. If the first character within
the square bracket list is the escape
character C), the list will defme all charac-

Dr. Dobb'sjournal,january 1991

ters that will not match. These charac­
ter lists may include ranges of charac­
ters: [A-Z] [0-9] will match any two
characters starting with one alphabetic
and ending with one digit.

The Shell also has built-in file tests
to determine file type. The commands
shown in Example 1, for instance, will
print the attributes of the file whose
name is stored in the variable a. Also,
the Shell can be directed to parse full
filenames into their component parts,
and programming is not needed to edit
the extension out of a filename. For
example, if we set the variable a to
"dirl \dir1\file.ext" the Shell will inter­
pret the filenames according to the list
shown in Table 2.

The Shell features a directory-stack
mechanism comprised of the commands
pushd, popd, and rotd. pushd is the
CD command with memory. It will re­
member the current directory (by plac­
ing it on the directory stack) and then
change to a new directory. popd will
return to the directory at the top of the
stack, and rotd will rotate the order of
the directories saved. Jumping around
from directory to directory is a snap,
especially when you use wildcards to
declare the directory to push.

Redirection
The Shell supports full I/O redirection
of any of its components and allows
you to build new commands from the
output of other commands on the same
command line. As an example, to
browse the unknown .C or .H files that
contain the string VIO, invoke the com­
mand: more 'grep -I WO *.[hcj'

The command line within the single
quotes is executed first, and its output
is then inserted into its place. So, monis
arguments are the output of grep.

The command line in Example 2,
which finds all duplicate filenames on
the current disk, demonstrates how pow­
erful a simple shell command can be.
Example 2 starts by creating a list of all
the full pathnames of every file using
the -r (recursive) option of Is. The :gt
means globally trim each pathname
down to just the tail (no drive: \dir\ \ \).
The foreach loop writes each name out
to the pipe, one per line. All lines are
sorted alphabetically and the uniq -d
command outputs just the duplicates.
Within moments, the current drive is
scanned for all files with the same name.

Supplied Utilities
The Hamilton C Shell product comes
chock-full of many wonderful utility
programs. All utilities have the same
homogeneous feel, a quality lacking
in other software packages. Also, all
Hamilton supplied programs will dis-

Dr. Dobb'sjournal,january 1991

p ay help when invoked with the -h I my ten favorites and described them
switch. Because there are so many utili- in Table 3. Table 4 lists other utilities
ties included in the package, I selected found in the package.

Expression Description C Shell result

$a:h (head) Directory \dir1\dir2

$a:r (root) Path w/o .Ext \dir1 \dir2\file

$a:t (tail) File name file.ext

$a:e (ext.) extension w/o . ext

$a:f (fullpath) expanded file name d:\top\dir1\dir2\file.ext

Table 2: Parsing filenames into their component parts

if (-d $a) echo $a is a directory
if (-H $a) echo $a is hidden
if (-R $a) echo $a is ReadOnly
if (-8 $a) echo $a is 8ystemFile
if (-e $a) echo $a exists
if (-x $a) echo $a is executable
if (-z $a) echo $a zero length

Example 1: Commands to print the attributes of a specified file

foreach i ('Is -r \' :gt) echo $i; end I sort I uniq -d.

Example 2: Command to find all duplicate file names on the current disk

Utility

chmod

markexe

pwd

mkdir

sum

tar

dt

setrows

patchlnk

du

vi

label

newer

older

tee

tr

wc

split

tabs

cat

head

rmdir

cp&mv

rm

Description

Change mode bits on files (not directories)

Set OS/2 application type bits

Print the current working directories

Make directories

Checksum the contents of a file

Read/write Unix tape archive format files

Print the date and time

Set height of current window

Patch "the linker bug"

List disk usage statistics

List volume labels

Read/write the volume label

Test whether file1 is newer than all the others

Test whether file1 is older than all the others

Copy Stdin to Stdout and to each file specified

Translate characters filter

Count words (and lines and characters)

Split a large file into chunks

Expand/unexpand tabs

Concatenate files to Stdout

Copy first part of file to output

Remove directories

Copy (or move) files or directories. These two programs can force read-only
files to be overwritten. They can ask before acting on each file and can log
the action. Both will merge subdirectories.

Remove files or directories. rm can force read-only files to be overwritten.
rm can ask before acting on each file and can log the action. rm can
recursively remove non-empty directories. (System files or hidden files or
directories can be removed.)

Table 4: Hamilton utility programs

3

EXAMINING ROO M

Final Assessment
Of course, no product is without its
blemishes. Although it improves with
each update, the documentation is the
weakest part of this otherwise fine prod­
uct. The documentation is written for
a highly technical user who understands
OS/2 and Unix. Users new to Unix will
need to read other documents (see Bib­
liography). The sparseness of complete
shell scripts makes it hard for a novice
C Shell user to appreciate the many
wonderful features of this product. Unix

. can be cryptic and unfriendly, but the
Shell's qwesome power makes it worth
the effort of learning.

While the C Shell is a text power­
house, database capabilities would
make this product more helpful for
business-oriented tasks. More power­
ful record I/O procedures and struc­
tures for full record handling would
help. If C Shell could integrate an ISAM
engine, C Shell applications could be
used to solve complex business and
scientific problems.

A screen-capturing feature and inter­
nal date functions would be greatly
appreciated. The Macintosh MPW com­
mando facility of dialoguing a shell com­
mand would help users build complex
commands without the aid of manuals.

While C Shell works fine in a PM
text window, inevitably it will evolve
into a full graphics PM application. Such
a version should embody the program­
ming strengths of HyperCard. Controls
and gadgets should invoke scripts, and
programmable dialogues could facili­
tate PM applications creation.

Bibliography
Anderson, Gail and Paul Anderson. Unix:
C Shell Field Guide. Englewood Cliffs,
N.J.: Prentice Hall, 1986.

Muster, John and Peter Birns. Unix:
Power Utilities. Portland, Ore.: MIS Press,
1989.

The Waite Group. Unix: Primer Plus.
2nd ed. Carmel, Ind.: Howard Sams,
1990,

DDJ

Entire contents copyright e 1991 by M&T Publishing. Inc., unless
orherwise noted on specific articles. AU rigilis reserved.

MP .s Th.
Audit
Bureau

Reprinted with permission of Dr.
Dobb's Journal, 1991

4

Listing One
f CTL_T.CSH

while (1)
echo -n "x14 > coml:
sleep 400

end f while

Listing Two

It endless * send control t to coml:
• Zzz for 400 seconds

f Procedure zew builds Zortech c++ and creates a PM program,
proc zew (name)' • param name

ztc -w -c $name.cpp • corrpile ($name is param
name)

t we test name.obj for eistance,
if (-e $name.obj) then t got valid obj file to link

link $name, /align: 16, NUL, os2+d: \oz\cp\srzpm.lib, $name
rm $name.obj • remove the obj

end f if
end t proc

zcw $argv t now here's the invocation of my proc defined above.

Listing Three
proc ged(edt_str, files)
local i
local n
foreach i (Sfiles)

@ n = concat(Si:r,".bak")
cp -1 $i:f $n:f
sed "$edt str" < $n:f > $i:f

end f foreach i -
end • end ged proc ()

f 2 pararns
t local variables used

f loop thru the f i1es
f save a backup (: r is root name)
• copy it (: f is full name)
I edit from new to i

End Usting One

End Usting Two

" ... much more powerful than CMD.EXE ... blindingly fast ...
we have a winner ... a much-needed and well-done product."

- Personal Workstation Magazine

The finest OS/2 command processor and
utilities available. Ideal for anyone faced
with daily tasks launching applications or
browsing or maintaining the file system.
Created explicitly for OS/2. RunsinaPMtext
window. Extensivelymulti-threaded.

Full-screen command line editing: Recall
and edit previous commands with the arrow
and function keys. Cut and paste anywhere.
Filename and command completion.

Powerful scripting abilities: Excels at
complex, tedious or repetitive projects.
Faithfully recreates the entire C shell
language as described in the Berkeley 4.3
UNIX® Programmer's Manual.

Virtually every important utility you will
ever need: cat, chmod, cIs, cp, cut,
diff, du, fgrep, grep, head, Is, kill,
more, mv, popd, ps, pushd, pwd, rm, sed,
sleep, split, strings, tabs, tail, tar,
tee, time, touch, tr, uniq, vol, wait,
wc and almost a hundred other commands.

Supports HPFS and long filenames.

Easily saves an hour a day. Easy to install
and easy to use. Unlimited support.

$350.00. Unconditional satisfaction
guarantee. MasterCard & Visa accepted.
($365.00 Canada/Mexico; $395.00 elsewhere.)

Hamilton Laboratories
13 Old Farm Road, Wayland, MA 01778-3117, U.S.A.

Phone 508-358-5715 • FAX 508-358-1113 • BIX hamilton

