
.. No programmers or systems integrators should consider
saddling themselves or their clients with the incompetent

CMD .EXE with [this} fine alternative available."
- Tom Yager, BYTE Magazine, February 1990

The superior alternative to the standard OS/2
command processor. Faithfully recreates the
entire C shell language as described in the
Berkeley 4.3 UNIX® Programmer's Manual.
Created explicitly for OS/2. Not one line
ported from or created on anything but OS/2.
Extensive support for multi-threading.

Features: Command line editing • History
• Filename and command completion •
Arrow and function keys • Enormous 64KByte
command lines • Aliases and shell procedures
• PATH hashing • Recursive filename
wild carding • Fully nestable control
structures • Variables, arrays and a powerful
expression grammar • Command substitution
• Background threads and processes.

Over 126 commands: alias, cat, chmod,
cis, cp,cut,diff,dirs,du,eval, fgrep,
grep, hashstat, head, history, label ,
ls,kill,markexe,more,mv,popd,printf,
ps, pushd, pwd, rm, sed, sleep, split,
strings, tabs, tail, tar, tee, time, touch,
tr, uniq, vol, WC, whereis and others.

Supports HPFS and long filenames.

Requires OS/2 1.1 or later. All executables
will run properly in a Presentation Manager
window. Not copy-protected.

$350.00. Unconditional satisfaction
guarantee. MasterCard & Visa accepted.

($365.00 Canada/Mexico; $395.00 elsewhere.)

Hamilton Laboratories
13 Old Farm Road, Wayland, MA 01778-3117, U.S.A.

Phone 508-358-5715 • FAX 508-358-1113 • BIX hamilton
Mel Mail 389-0321 • Internet 3890321 @mcimail.com

Contents

Product Specification . 1
Control Structures. .. 2

Basic Statements 2
Condition Testing 2
Iteration 3
Procedures 3
Aliases 4
Variable and Expression Manipulation 4
Local Variables 5
Function Keys 6
Miscellaneous Statements 7

Built-in Procedures 8
Utilities 10
Shell Features 15

History Recall 15
Command Completion 15
Wildcarding and Pattern Matching 16
Filename Completion 16
Command Line Editing 17

Expressions . 18
Statement Relationships 18
II 0 Redirection 18
Quoting 19
Escape Sequences 19
Expression Operators 20
File System Tests 21
Variable Substitution 22
Substitution Modifiers 23
Pathname Editing 23

Predefined Variables . 24
Starting Hamilton C shell . 28
Regular Expressions . 29
Sample Applications . 30

Hamilton C shell™ Quick Reference

Product Specification:

Provide full compliance with the entire C shell language (except job control) as
defined in the Berkeley 4.3 Unix® Programmer's Manual and by Anderson &
Anderson in The UNIX C Shell Field Guide.

Provide a complete set of all the important utilities popular on high-end
workstations including such favorites as grep, sed, head, tail, diff, Is, more, mv,
cp, rrn and many others.

Design everything from scratch for OS/2® protected mode:

1. Show off all the best of OS/2: HPFS, long filenames and extended
attributes; networks; text, full-screen and PM applications;
highlighting and color; standard OS/2 conventions for key bindings
and environmental variables.

2. Provide world-class features: history and command line editing of
enormous command lines with arrow and function keys; filename and
command completion; wild carding; piping and command substitution;
background activities; aliases, procedures and local variables.

3. Use a modern top-down parser for better language recognition. Allow
control structures such as foreach or if to be nested arbitrarily, piped
or put in the background.

4. Take advantage of OS/2 threads to achieve performance and
functionality not possible in UNIX.

5. Make it responsive: very fast interrupts, command line editing, screen
updates and spawning of children.

Provide the highest possible performance, especially when executing shell scripts
or iterative statements.

Provide fanatical quality.

Hamilton Laboratories, 13 Old Farm Road, Wayland, MA 01778, 508-358-5715
Copyright © 1988 -1990 by Hamilton Laboratories. All rights reserved. (Revised July 10, 1990)
OS/2 is a registered trademark of International Business Machines Corporation. UNIX is a registered trademark of
AT&T. Hamilton C shell is a trademark of Hamilton Laboratories.

Hamilton C shell Quick Reference

Control Structures

Basic Statements:

Same as cmd. exe: a file reference + arguments.

Examples: cl -AS -G2 -zi hello.c
cp hello.exe c:\os2\bin

-------Hamilton C shell maintains a hash structure which allows it to quickly search for a
suitable . csh, . exe, . com or . cmd file (in that order) in each of as many as 256 path
directories. Wildcarding is done by the shell before invoking the child. Up to 64K of
environmental and 64K of command-line argument data (the limits of OS/2) can be
passed to a child process.

Condition-Testing:

if (<expr>) then
<statement_list>

else
<statement_list>

end

if «expr» <statement>

switch (<expr>)
case <expr> :

<statement_list>
case <expr> :

<statemenClist>
default :

<statement_list>
end

Where an expression is expected, a conventional high level language syntax is accepted:
e.g., names refer to variables, '*' means multiply, not wildcard and '>' means greater
than, not i/o redirection.

The short form of the if statement dispenses with the alternate else case. Type the whole
thing on one line. In a switch statement, expressions are compared by pattern match:
the case expression can be a string with wildcard characters. Comparisons are made
down the list of alternatives until one matches. All following statements are executed
until a break is encountered.

Page 2

•

Iteration:

Hamilton C shell Quick Reference

foreach <name> (<word list>)
<statemenClist>

end

for <name> = <expr> [to <expr>] [by <expr>] do
<statement_list>

end

while (<expr>)
<statemenClist>

end

repeat <number> <statement>

repeat
<statemenClist>

until (<expr>)

The foreach statement is intended for iteration over a list of words, often specified by
wildcarding. The for statement offers the more conventional numeric iteration. Multiple
iteration ranges, separated by commas, can be specified on the for statement.

Procedures:

proc <name> ([<namelist>])
<statement_list>
return [<expr>]

end

proc

unproc <namelist>

Procedures defined by the proc statement can recursively call other procedures. They
can be referred to inside an expression or as a new command, in which case any value
returned is written to stdout. The proc statement with no arguments causes a list of the
available procedures to be written. The unproc statement allows a procedure to be
discarded.

Page 3

Aliases:

Hamilton C shell Quick Reference

alias <name> [=] (<word list>)
alias <name> [=] <word list>

alias
alias <name>

unalias <namelist>

Aliases can be referred to at the beginning of a command and provide a quick, user­
defined shorthand. alias <name> with no arguments prints the value of the name. alias
without any arguments prints the values of all aliases.

Variable and Expression Manipulation:

@<expr>
calc <expr>

The @ and calc statements will each calculate the value of an expression; the @ statement
does it silently while the calc statement writes the result to stdout.

set <named_ref> [=] (<word list>)
set <named_ref> [=] <word list>
setenv <named ref> [=] (<word list>)
setenv <named ref> [~] <word list>
shift [<name> r '
set
set <name>
setenv
setenv <name>

unset <namelist>
unsetenv <namelist>

The set, setenv and shift statements manipulate variables as words rather than
expressions. set defines a set variable that's shared between all threads in the shell;
setenv puts it into the environment and inherited by child processes. set or setenv with
no operands prints a list of all defined variables of that type. set <name> or
setenv <name> with no arguments print the value of the named variable. unset or
unsetenv let you discard a variable.

Page 4

Hamilton C shell Quick Reference

Local Variables:

The local command lets you define a list of variable names that you don't to share with
other routines or other threads or processes. When you define a local variable it hides
any previous definition from any outer statement list. (But you are not permitted to
redefine any of the built-in set or setenv variable names.)

local <namelist>
local

The <namelist> should be typed with commas between the names. When you create a
new local variable, its initial value is always a null string. Typing local with no operands
reports the currently defined and accessible local variables, if any.

Local variables are automatically discarded as soon as execution leaves the statement
nesting level in which the variable was created. You can also explicitly discard local
variables using the unlocal command.

unlocal <namelist>

In all other respects, local variables act just like any other variables, though you may find
they're slightly faster since the shell doesn't need to semaphore its use of them.

PageS

Hamilton C shell Quick Reference

Function Keys

setkey command:

The setkey command lets you define a list of words that should be stuffed back onto the
command-line whenever you press a particular function key. The syntax is exactly the
same as used in the set, setenv and alias commands:

setkey <£key> [=] (<word list>)
setkey <£key> [=] <word list>

where <fkey> is any of the function keys f1 (or Fl) through £12 (or F12.)

Typing setkey with no operands reports the current function key bindings, if any. Also,
a corresponding unsetkey command lets you discard key bindings:

setkey
unsetkey <£keylist>

The <fkeylist> should be typed with commas between the keys. For example:

unset key fl, f2

Using the Function Keys

Key

<Fx>

Alt-<Fx>

Ctrl-<Fx>

Meaning

Clear the command line, post the text bound to this
key and execute the command.

Insert the text bound to this key at the cursor location
but don't execute it yet.

Clear the. command line and post the text bound to
this key but don't execute it yet.

Since the function key's bound text is written back into the command line inside
command line editor, the substitution happens ahead of any parsing of the command line
into words or expansion of history I/!..." or 1/% ... " references so it is possible to
meaningfully embed these kinds of references into the key binding.

Page 6

Hamilton C shell Quick Reference

Miscellaneous Statements

Statement

<drive>:

<label>: <statement>

(<statement_list>)

break [<name>]

continue [<name>]

exit [<expr>]

goto <name>

onintr <statement>

source <wordargs>

time <statement>

Function

Change current drive.

Define a label.

Group a list of statements, saving and
restoring the current directory during
execution

Exit from the named or, by default, the
innermost switch, foreach, for, while or
repeat statement.

Continue with the next iteration of the
named or innermost foreach, for, while
or repeat.

Exit from this thread or, if this is the
main thread, from the C shell.

Continue at the labeled statement.

Define the action to be taken if an
interrupt is signaled.

Read and process statements from a file
as if they were typed into this thread.

Execute the statement and report how
long it took.

Comment text up to the end of the line.

Page 7

Hamilton C shell Quick Reference

Name

Filename Functions:

childpath(p, c)

driveno(p)

fullpath(p)

samepath(a, b)

Math Functions:

abs(x)

acos(x) asin(x) atan(x)

cosh (x) sinh(x) tanh(x)

ceil (x)

Built-in Procedures

Function

Test whether filename c could be in a subdirectory
of p. (Does not test for actual existence of either c
or p.)

Drive number implied by pathname p.

Fully resolve pathname p.

Test whether two filenames, a and b, point to the
same file.

Absolute value

cos (x) sin (x) tan (x)
Trigonometric functions

Hyperbolic functions

Ceiling (lowest integer ~ x)

exp(x) log (x) log2(x) loglO(x)

floor(x)

round (x)

sqrt(x)

String Functions:

char(i)

code(c)

concat(a, b, ...)

isinteger(x)

isnumber(x)

Exponential and logarithmic functions

Floor (highest integer $ x)

floor(x + 0.5)

Square root

Return the character corresponding to the numeric
value i.

Return the numeric encoding of the character c.

Concatenation of a series of strings.

Test whether x is an integer. (Remember that null
strings and strings consisting only of white space
are considered equal to 0.)

Test whether x is a number.

Page 8

Hamilton C shell Quick Reference

Name

printf(fmt, ...)

reverse(s)

strindex(a, b)

strlen(s)

substr(s, b, i)

upper(s) lower(s)

Built-in Procedures

Function

Perform C language-style print formatting,
returning the result as a string. These argument
formats are recognized:

%c Single character.
%d Decimal number.
%e [-]d.dddddde[+-]ddd
%f [-]ddd.dddddd
%g %e or %f formatting, whichever is

shorter.
%0 Unsigned octal number.
%s String.
%x Unsigned hexadecimal number.
%% Literal % character.

Additional parameters may lie between the % and
the control letter:

Left-justify expression in its field.
width Pad field to this width as needed;

leading 0 pads with zeros .
. prec Maximum string width or digits to right

of decimal point.

Reverse the order of characters in s.

Return the position in a of the first occurrence of b.
(0 means b was not found.)

Number of characters in s, represented as a string.

Substring of length i beginning at b-th character of
s. (b = 1 is the first character; i = 0 means "rest of
s.")

Translate a string to all upper- or all lower-case.

Page 9

Hamilton C shell Quick Reference

Utilities

In this table, italics indicates a built-in utility. Normal typestyle indicates an
external utility. Courier indicates an alias.

All utilities self-document with the - h option. Any external utility may be
renamed simply by renaming the executable file. Additional utilities are planned
and will be sent free to registered users.

Command

app

ar2

beep

cat

cd

cdd

chcp

chdir

chmod

cIs

copy

cp

csh

cut

date

del

dir

diff

Function

Append to a file.

Archive or restore OS/2 files and directories. Similar to tar
but designed for long filenames, extended attributes and
other OS/2-specific characteristics.

Beep sound.

Concatenate files.

Change current directory. Optionally, change disk.

Change both current directory and current disk.

Change code page.

A synonym for cd.

Change mode bits (Hidden, System, Read-Only and
Archive) of file. Optionally, recursively walk through
directories, chmod'ing all the contents.

Clear the screen.

Invoke the standard IBM/MS copy command with shell
wildcarding turned off so copy will work sensibly.

Copy files or directories. Options for interactive and
logging modes and for merging sub-directories.

Invoke Hamilton C shell.

Cut out selected fields of each line of text. Fields can be
defined by delimiter characters or by column numbers.

Display the current time and date using dt.exe.

Delete files.

Invoke the cmd.exe dir command.

Compare files or directories. Optionally generates merged
listings of old and new versions, showing changes in
context using color highlighting. Options for ignoring
differences in white space or character case and for setting
the re-synchronization window size.

Page 10

Command

dim

dirs

dskdup

dskread

dskwrite

dt

du

dumphist

echo

erase

eva 1

f

fgrep

find

g

grep

h

hashstat

head

Hamilton C shell Quick Reference

Utilities

Function

Discard any ansi escape sequences in the input stream.

Print the directory stack.

Fast duplication of a diskette using the dskread and
dskwrite utilities.

Read low-level sectors from a disk to stdout.

Write low-level sectors from stdin to a disk.

Display the date and time.

Display disk usage. Shows amount and percentages of
allocated and free space in a partition. Optionally shows
cluster information.

Dump out the history list.

Echo arguments to stdout. Options for writing to stderr
instead of stdout and for omitting any trailing newline.

Older IBM/Microsoft name for deleting a file.

Reparse and execute the argument word list as a command
after any run-time substitutions or wildcarding.

Quicker name for fgrep.

Fast string search (fast grep) of text files. Can search for
any number of strings in a single pass. Options for
ignoring differences in white space or character case,
reporting line numbers, etc.

Find all files in a directory matching certain criteria.

Quicker name for grep.

Regular expression pattern search of text files. Includes
fgrep-style option for searching for any number of patterns
in a single pass. Options for ignoring character case,
reporting line numbers, etc.

Quicker name for history.

Print path hash statistics. Tells how many tries, on the
average, the shell needs to find a file in the PATH
directories. (Usually less than 2 tries.)

Copy the first few lines or bytes of a file to stdout.
Optional tab expansion.

Page 11

Command

help

history

home

kill

label

11

loadhist

Is

markexe

md

mi

mih

mis

mkdir

more

moreh

mv

newer

older

patchlnk

pause

Hamilton C shell Quick Reference

Utilities

Function

Invoke the IBM/Microsoft help command.

Display the history list of past commands.

Change to the home disk and directory.

Kill background threads, processes or screens.

Read/Write the volume label.

List directories, long format.

Load the history list without executing any of it.

List directory contents. Options for selecting only certain
types of files, recursively walking through entire directory
trees listing contents or summing file sizes, and sorting and
displaying the results in a number of formats.

Mark an . exe file to indicate whether an application is
text-windowable, full-screen or PM graphics and whether
it supports long filenames.

Make directories.

Quick interactive startup of your favorite version more.
Clears the screen when it starts up and doesn't just exit if
there's less than a screenful.

Huge interactive more.

Small interactive more.

Make a new directory.

A better more utility. Able to search forward or backward
or to a specific line and to display non-printable characters
in binary or as C language-style escapes. On-line help.

A large model version of more. Not quite as fast, but able
to remember megabytes of data coming through a pipe.

Move files or directories. Options for interactive and
logging modes and for merging sub-directories.

Test whether first file is newer than the others.

Test whether first file is older than the others.

A (very) special-purpose utility to patch a bug in the
Microsoft linker.

Pause, waiting for any keystroke or character from stdin.

Page 12

-

Command

popd

ps

pushd

pwd

q

rd

rehash

ren

rename

rm

rmdir

rotd

sed

setrows

sleep

sort

source

split

start

strings

sum

Hamilton C shell Quick Reference

Utilities

Function

Pop directory stack.

List process and thread status.

Push a new current directory on the directory stack or
exchange the top two items.

Print the working directories.

Exit the C shell.

Remove empty directories.

Rehash the path directories.

Another name for the rename alias.

Invoke the standard IBM/MS rename command with shell
wildcarding turned off so the rename will work sensibly.

Remove files or directories. Options for removing entire
directory trees or even read-only or system files and
directories.

Remove empty directories.

Rotate the directory stack.

Stream editor. Reads a line at a time from stdin, does
whatever editing is requested and writes the result to
stdout. Provides search and replace with regular
expressions, character translations, inserting and deleting
blocks of text and branching and condition-testing.

Set or report the number of rows in the display window.

Sleep for a specified period.

A better, faster sort, capable of handling more than 64K
bytes. Options for sorting on just certain fields, etc.

Read commands from a file.

Split a large file into equal-sized chunks counting either by
bytes or lines.

Start a new session.

Extract ASCII strings from a binary file. Options for setting
minimum string lengths, whether they need a line end or a
null character at the end, and reporting offsets where the
strings were found.

Checksum the contents of a file. Options for several
checksum algorithms.

Page 13

Command

tabs

tail

tar

tee

touch

tr

type

unhash

uniq

ver

verify

vol

wait

wc

whereis

xcopy

xd

Hamilton C shell Quick Reference

Utilities

Function

Expand/Unexpand tabs.

Copy the last few lines or bytes of a file to stdout. Includes
-f (follow) option for watching as data is added to the end
of a file by another process. Optional tab expansion.

Read/Write UNIX tape archive (tar) format files. Options
for interatively or automatically renaming files as
necessary for HPFS or FAT partitions, swapping byte sex
(including auto-sensing byte sex in an archive), selecting
just a portion or an archive and converting between UNIX
and OS/2 line end conventions.

Pipe fitting. Snapshot data passing through a pipe into one
or more files.

Update the time-stamp on a file or a directory. Recursive
option for touching everything in a directory.

Translate characters. Options for editing out specified
characters or just repeated characters and for normalizing
line endings.

Copy files to stdout.

Turn off path hashing.

Unique lines: discard adjacent duplicates. Options for
ignoring white space and for reporting only lines with
duplicates or only lines with no duplicates.

Display the current OS/2 and Hamilton C shell version
numbers.

Turn write verification mode on or off. Write verification
on means the OS/2 kernel will be asked to always verify
that any data written to a disk can be read.

List volume labels using vl.exe.

Wait for children to complete.

Count lines, words and characters.

Tell which PATH directory a given executable is in.

Invoke the standard IBM/MS xcopy command with shell
wildcarding turned off so xcopy will work sensibly.

Hex dump a file to stdout. Options for specifying offsets to
start and stop dumping, binary and floating point formats,
arbitrary radix.

Page 14

."

Hamilton C shell Quick Reference

History Recall

History recall allows a previous statement to be quickly recalled and re-executed. It's a very fast
shorthand, especially in the edit/ compile/ debug loop or to fix a typo. For convenience, "!" is
taken as an ordinary character if followed by white space, "=", "-" or "(".

If you want, you can choose different characters to introduce history references by changing the
histchars variable.

Command

!!

!/\

!$

!*

!n

!-n

!str

!?str?

%strl %str2%

Meaning

Last command

First argument word of last command

Last word of last command

All arguments of last command

Command n

nth command from the last

Last command starting with str

Last command containing str

Substitute str2 for strl in last command. (Used
only at the beginning of a line.)

Command Completion

Command completion lets you type just part of a previous command and have the shell fill in the
rest. As with filename completion, bright red highlighting is used if no match is found.
Consecutive depressions cause the search to continue on back through the history list.

Key

Ctrl-<Enter>

Alt-<Enter>

Meaning

Search for the last command that starts with the
characters in the previous word.

Search for the last command that contains the
characters in the previous word anywhere on the
command line.

Page 15

Hamilton C shell Quick Reference

Wildcarding and Pattern Matching

Wildcarding is nestable arbitrarily and uses a recursive comparison algorithm to guarantee a
sensible result no matter how complex the pattern. For example: *r* or even *\ [a-c] *. [ch]

operate sensibly. Wildcards will match any filename except "." and " .. " unless it's marked
''hidden.''

Characters

?

*

[a-z]

[I\a-z]

{a,b}c

Meaning

Match any single character, including '.' but not '\' or
, /'.
Match any number of characters, including '.' but not
'\' or' /'.

An example range: match any character a through z.

An example exclusion range: match any character not
in the set a through z.

Alternation: generate both ae and be.

Filename Completion

Filename completion lets you type just the first part of a filename and have the shell fill in the
rest. The two variations are using the F key for basic filename completion or the D key if you
want all the duplicates listed.

Key

Alt-F or Cntl-F

Alt-D or Cntl-D

Meaning

Filename completion. Appending the "*" wildcard
character onto the end, use the previous word as a
wildcard pattern. If it matches a single file, substitute it in
with a space following.

If there were multiple matches, but they all had some
common front-part that fully "used up" the pattern,
substitute in just that common front-part and show it in
green.

If substitution wasn't possible, highlight the pattern in
bright red. (Any highlighting color is turned when you
press the next keystroke.)

Duplicate completions. Same wildcarding, but if there are
multiple matches, show them all with a space following. If
there were no matches, highlight the pattern with bright
red.

Page 16

I
J

i

!

Key

<Enter>

<Home>

<End>

i

f-

~

Ctrl-<Home>

Ctrl-<End>

Ctrl-i

Ctrl-J,

Ctrl-f­

Ctrl-~

Alt-<Home>

Alt-<End>

Alt-i

Alt-J,

Hamilton C shell Quick Reference

Command Line Editing

Meaning

Accept the command as typed. Move to the end (if not there already)
and carriage return to a new line.

Beginning of command line.

End of command line.

Up one command in the history list. Each time it's pressed, it displays
the preceding entry in the history list. Any "! ... " or "% ... " history
references in the original text will have been fixed up unless it was the
immediately preceding command and it had one these references that
failed. If already at the first entry, the command line is highlighted in
bright red.

Down one command line in the history list. If already at the latest entry,
the command line is highlighted in bright red.

One character left.

One character right.

Move to the upper-leftmost character in the current screenful if the
command is long enough that it actually wraps across several screens.

Move to the lower-rightmost character in the current screenful.

Up one row on the screen if the command is long enough that it runs
over a row.

Down one row on the screen.

Backup word.

Forward word.

Delete all preceding characters on the command line.

Delete all following characters.

Delete up one row on the screen if the command runs over a row.

Delete down one row.

Alt-f- Delete preceding word.
Ctrl-<Backspace>

Alt-~ Delete following word.

<Insert>

Ctrl-<Insert>

Alt-<Insert>

<PageUp>

<PageDown>

<Esc>

Toggle insert/ overstrike mode. When inserting, the cursor is slightly
thicker.

Insert the next word from the last section of deleted text. When it
reaches the end of the deleted text, it starts over.

Insert all the rest of the previously deleted text.

Backup to one past the last history reference. (Repeatedly typing
<PageUp> <Enter> is a convenient way of picking up a whole series of
commands from history.)

Forward to the newest entry in the history list.

Clear the command line.

Note: Users lacking separate arrow keys must press Ctrl-Shift instead of Alt.

Page 17

Hamilton C shell Quick Reference

Statement Relationships

The grammar is completely recursive, so statements of arbitrary complexity can
be freely nested, conditionally executed, piped or redirected.

In order of decreasing precedence:

Operator Meaning

() Grouping

> >! >& >&! » »! »& »&! < «

1&

... &

&& II

Operator

> >! >& >&!

» »! »& »&!

<

« <string>

II 0 Redirection

Piping (stdout only or
stdout + stderr) between concurrent
operations

Background thread or process

Conditional execution: only if first
succeeds or only if first fails

Serial execution

I/O Redirection

Meaning

Output to a file. '!' allows an existing
file to be overwritten even if noc1obber
is set. '&' redirects both stdout and
stderr.

Append to a file

In from a file

Inline data: the text on the following
lines, up to the line containing only the
specified <string> will be fed as stdin to
the statement.

Page 18

String

" "

String

I\a

I\b

I\f

I\n

I\r

I\t

I\v
1\1\

Hamilton C shell Quick Reference

Quoting

Meaning

Literal character string. Only do history
substitutions.

Single word. Typically used if there are
embedded blanks or wildcard characters you want
treated as ordinary. Has no effect on command or
variable substitutions: they're still done.

Command substitution. Evaluate the string as a
separate command and substitute its output back
onto the command line. Newlines are turned into
spaces and Ansi escape sequences (for
highlighting, etc.) are filtered out.

Quote just the next character. Use to remove any
special meaning from the next character, to specify
a character by its binary value or to specify one
following non-printable characters. If the
NewLine character at the end of a line is quoted
this way, it's treated as ordinary white space.
(You can choose a different escape character by
changing the escapesym variable.)

Escape Sequences

Meaning

Audible alert (bell)

Backspace

Form Feed

NewLine

Carriage Return

Tab

Vertical Tab

Single escapesym character

Page 19

Hamilton C shell Quick Reference

Expression Operators

In order of decreasing precedence:

Operator

()

{}

[]

Meaning

Grouping or Procedure call arguments

Run the enclosed statement list and return 1 if it
succeeds or 0 otherwise.

Array indexing. (The first element is element 0.)

-A -D -H -R -S -d -e -f -0 -w -x -z
File system tests

++

**

* /

+ -
«

--

&

A

&&

1 1

?:

!

%

»

!=

+

=- !- < <=

Prefix and postfix increment/ decrement

Bitwise, arithmetic and logical complements and
unary plus

Exponentiation

Multiplication, Division and Remainder

Addition and Subtraction

Bit Shifting

>= >
Relation-testing and pattern-matching operators

Bit And

Bit Xor

Bitar

Logical And

Logical Or

Conditional selection

= += -= *= /= %= »= «= &= A= 1= **-
Assignment operators

Expressions result in sensible types, considering both the types and the values of
the operands. For example, 10/2 returns the integer 5 but 5/2 produces the
floating point value 2.5. Also, the integer 1, the floating point value 1.0 and the
string //1// all compare equal.

Page 20

-
Hamilton C shell Quick Reference

File System Tests

The operand of a file system test is interpreted as a word, not an expression, and
may involve wildcarding. If wildcarding produces more than one match, the test
is done on the first one.

Prefix Operator

-A

-D -d

-H

-R

-5

-e

-f

-0

-r

-w

-x

-z

Example:

True if

Archive Bit Set

Directory

Hidden File or Directory

Read -onl y File or Directory

System File or Directory

File or Directory Exists

Ordinary File

Ownership (Same as Existence on an OS/2 FAT
file system)

Readable (Same as ordinary file on an OS/2 FAT
file system)

Writable (Not Read-only)

Executable (Has a .csh, .exe, .com or .cmd
extension and, if it's an .exe and .com file, appears
to be a valid OS/2 binary executable.)

Zero-length File

if (-d Sa) then
echo $a is a directory

end

Page 21

Hamilton C shell Quick Reference

Variable Substitution

Variable substitution is typically used to pass the value of a variable as an
argument to a command. For example: cl -AS -G2 -Zi $a. c

Reference

$var $ {var}

$var[<expr>] ${var[<expr>]}

$#var ${ #var}

$?var ${?var}

$<

$0 .. $9

$proc(<exprlist»

$(<statement_list»

Meaning

Value of variable var.

value of var, indexed by an arbitrarily
complex expression.

N umber of words in var.

1 if var exists; 0 otherwise.

Pseudo-variable result of reading one
line from stdin each time it's evaluated.

Same as $argv[O] .. $argv[9].

Substitute in the result of calling the
procedure proc. Arguments can be
given as a list of arbitrarily complex
expressions.

Alternate comand substitution.
Substitute in the stdout result of
running the statement list inside the
parenthesis in a child thread, discarding
escape sequences and turning newlines
into spaces. Similar to \ ... \ -style
command substitution except it's a little
simpler for nesting several levels.

Page 22

Operator

:n

.A

:$

:%

:n-m

:-n

:n-

:n*

. *

:q

:s I strl I str2 I
:&

:g ...

:x

:p

Operator

:h

:r

:t

:e

:f

Example:

Hamilton C shell Quick Reference

Substitution Modifiers

Meaning

nth word.

Word number 1, counting from 0

Last word.

Word matched by a !?str? history search.

nth through mth words

o through nth words.

n through next-to-Iast words.

n through last word.

1 thru last word .

Single quote each word.

Substitute str2 for strl.

Repeat last substitution.

Global editing: apply the edit operation
everywhere it matches, not just the first occurrence.

Treat each word as a string and break it up into
words.

Print the substitution but don't execute the
statement. (Ignored except in history
substi tu tions.)

Pathname Editing on x\y\z.c

Name Meaning Result

head Directory containing x\y

root Path w/o .ext x\y\z

tail Simple filename z.c

ext .ext wi 0 the fl." C

fullpath Fully-qualified name d:\bob\x\y\z.c

echo $path:gt

Page 23

Hamilton C shell Quick Reference

Predefined Variables

Legend for this table:

COURIER A setenv environmental variable. Environmental variables are passed to any
child processes or screens you create by invoking an external utility or
application. When Hamilton C shell starts up it looks for the ones shown here to
be defined in the environment it inherits; if they're not already defined, the shell
creates them.

bold A set variable shared by all threads: if one makes a change, all will see it.

normal Each thread gets its own copy but the initial value is inherited from its parent.

italics Each thread gets its own copy but the initialization is always to a defined value.

Name

@

<
argv

bsdhistory

cdhome

cdisk

CDISK

cdpath

chgdisk

child

COMSPEC

cwd

DRIVEMASK

Default

o

o

null

o

o

Use

A synonym for the stmtnumber variable.

A synonym for the getline variable.

Any argument words passed to the shell or to a
. esh batch file.

By default, "! !" is the immediately preceding
command and" ! -1" is the one before that.
Setting bsdhistary = 1 makes them the same.

If set, "cd" with no argument is the same as
"cd $hame"; default is to simply print the
current directory name.

Current disk, not including colon.

Same as cdisk, but in upper case.

List of directories to search for the subdirectory
specified as the new current directory.

If set, cd automatically does a DosSelectDisk if
the path is on another disk.

Identification number of the last child process
spawned.

Pathname of emd. exe.

Full pathname of the current directory.

Used by du. exe, pwd. exe and v1. exe to limit
the default list of drives it will report on. Written
as a list of alphabetic characters representing the
drives you want listed; ranges are allowed. If you
don't define this variable, all drives beginning
with c: are normally reported.

Page 24

--

Name

echoinput

eofgetline

ESCAPESYM

escapesym

getchar

getline

gotowindow

histchars

history

HOME

home

ignoreeof

ignoreerrors

ignorestatus

interactive

nohashing

Hamilton C shell Quick Reference

Default

0

0

A

A

50

!%

0

0

0

1

0

0

Predefined Variables

Use

Copy the input to stdout as it's read.

Pseudo-variable to indicate if the last reference to
getline encountered an end-of-file condition.

Character to be interpreted as a literal escape
character.

Same as the ESCAPESYM environmental variable.

Read one character from stdin without echoing.
If stdin is tied to the keyboard, outboard keys are
returned as a two-character string.

Read one line from stdin pseudo-variable. If
stdin is tied to the keyboard, keystrokes are
echoed as they're typed.

Number of statements a goto can jump over
(when not inside a nested block) without being
considered an error.

Characters which introduce long-form and short-
form history references, respectively.

Number of statements to remember on the history
list; 0 turns off the history mechanism. (If the
thread is interactive, history is automatically set
to 100.)

Home directory (default is the initial current
directory.)

Same as the HOME environmental variable.

If True, don't exit at EOF on stdin; insist on an
exit command.

Determine whether execution should continue if
an error occurs: 0 means the thread exits; 1 (the
default for an interactive thread) means exit from
loops or procedures and try to read a new
command; 2 means ignore all errors.

If True, a non-zero status code from a child
process is ignored. Otherwise, it's an error.

If True, prompt for input.

If True, turn off hashing of the directories on the
search path.

Page 25

Name

no clobber

noglob

nonohidden

nonomatch

nonovar

nowild

nullwords

PATH

path

precision

PROMPTl

promptl

PROMPT2

prompt2

RADIX

savehist

scriptname

SHELL

shell

status

Hamilton C shell Quick Reference

Default

o

o

o

o

o
o

6

$@ $CDISK%

$@ $CDISK?

o

o

Predefined Variables

Use

If True, don't allow redirection to overwrite an
existing file unless the"! II override is given.

A synonym for the nowild variable.

Determine whether wildcarding will match
against hidden files: 0 means don't match hidden
files; 1 means hidden files will be found.

Determine the response to a wildcard that doesn't
match anything: 0 means it's an error; 1 means
pass it through to the application; 2 means simply
discard it.

Determine the response to a non-existent variable,
procedure or alias. Same encoding as nonomatch.

If True, turn off filename wildcarding.

Determines whether an array index off the end of
a list is an error (0) or returns a null word (1.)

Search path for executable files.

Same as the PATH environmental variable, broken
into words.

Number of decimal places to print when
displaying floating point values.

Primary command prompt template.

Same as the PROMPTl environmental variable.

Continuation line prompt template.

Same as the PROMPT2 environmental variable.

Default radix used by more. exe when
displaying binary data. If not defined, RADIX =
16 is used.

Save the history contents into history. csh in
the horne directory.

Name of the C shell script file being executed, if
any.

Always set to the pathname of the Hamilton C
shell csh. exe file.

Same as the SHELL environmental variable.

Exit code of the last child process.

Page 26

-

Name

stmtnumber

SWITCHCHARS

TABS

tailstatus

threadid

TZ

verbose

Hamilton C shell Quick Reference

Default

1

8

o

o

Predefined Variables

Use

Autoincremented statement number used with
the history list and in prompting.

Characters that can be used as option introducers
for the shell and utilities. If undefined, "-" and
" /" are used.

Used by more. exe to tell it how many character
positions there are between tab stops.

Determines whether the status variable will
reflect the reflect the return code from the
leftmost or rightmost stage of a pipeline: 0 means
leftmost; 1 means rightmost.

Thread id of the currently executing thread.

Used by tar. exe to tell it how to convert
between local time and GMT. The TZ variable
should be in the form of a three-letter timezone,
e.g., EST, followed by a signed number giving the
difference in hours between GMT and local time,
followed by an optional daylight savings
timezone. Examples are EST5EDT in New York
or PST8PDT in California.

If True, print out all available information when
reporting errors.

Page 27

Hamilton C shell Quick Reference

Help for Hamilton C shell

csh: Startup the Hamilton C shell

Usage: csh [-!cCefFhiLlnsZ-] [arguments ...]

Options:

-! Ignore errors: Continue execution even if a command
terminates abnormally. (Implied by interactive.)

-c Execute the command following on the command line, then
exit. (Implies not interactive.)

-C Immediately execute the command on the command line, then
continue with normal startup and processing of stdin. (Useful
for specifying a change directory to the home directory when
starting up as a new OS/2 session.)

-e Echo the raw input to stdout.
-f Fast startup: Don't look for a startup. csh file.
-F Faster startup: Don't look for a startup. csh file and don't

hash the path directories.
-i Interactive (even if stdin appears to be a file or a pipe): Prompt

for input and show the result of history substitutions.
-L Login shell: Look for login. csh and logout. csh and do

history save at exit if savehist == 1.
-1 same as-L.
-n No execution: Parse commands looking for syntax errors but

don't execute them.
-s Read and execute a single line from stdin. (Implies not

interactive.)
-Z Very special purpose: Don't bump the maximum file handle

count during shell initialization. Use this option as a
workaround if you encounter an application that fails if it
inherits a larger limit. This option only works from the Start
Programs or Group menus, not the command line.

-h Help.
End of options.

(H preferred, the slash, "j," may be used in place of a minus to specify options to
csh.exe or any of the utilities.)

Page 28

-
Hamilton C shell Quick Reference

Regular Expressions

Regular expressions are used by grep and sed for text search and replace
operations. They're a bit more complex than wildcards used by the shell but
better suited to manipulating large text files. Regular expressions are written in
this notation, in decreasing precedence:

Characters

c

\c
1\

$

[... J
[1\ ••• J
\n

r*

rlr2

\(r\)

Meaning

Any ordinary character matches itself.

Match the literal character c.

Beginning of line.

End of line.

Match any single character.

Match any single character in the list.

Match any single character not in the list.

Match whatever literal text the n'th tagged \(. .. \)
expression matched.

Match zero or more occurrences of r. (In a regular
expression, I/*" doesn't match anything by itself; it's
only a postfix operator against the previous
expression.)

Match expression rl followed by r2.

Tagged regular expression. Match the pattern inside
the \(. .. \), and remember the literal text that matched.

In addition, in a sed replace string, 1/&/1 refers to whatever the search string
matched.

Since many regular expression characters have special meaning to the C shell, it's conventional to
single quote any regular expressions on the command line. Also, type two "/\" characters to
mean one except when it immediately follows "[." For example, to look for the word "main"

followed by matched parenthesis in all the . c files:

% grep -n 'main.*(.*)' *.c

cat.c:163:void main (argc, argv)

chmod.c:305:void main (argc, argv)

cut.c:871:void main (argc, argv)

date.c:109:void main (argc, argv)

Page 29

Hamilton C shell Quick Reference

Sample Applications

Factor.csh: A self-loading procedure which prints a list of the factors of a
number, illustrating the use of recursion.

proc factor(n)
if (n > 2) then

for i = 2 to floor(sqrt(n» do
if (n % i == 0) then

echo $i
return factor (n/i)

end
end

end
return n

end

factor $argv

Invoked as:

factor 6324489

It would print:

3
3
702721

To print the factors on one line and time how long it takes:

time echo 'factor 6324489'

The ' ... ' sequence means command substitution: run what's inside the
backquotes and substitute the output back onto the command line. This would
print:

3 3 702721
0:00:02.35

Page 30

--
Hamilton C shell Quick Reference

Sample Applications

ts: A procedure to do a simple text search of all files with a given extension
anywhere in a directory tree.

proc ts(startdir, ext, text)
local files
pushd -s $startdir
set files = 'ls -rDl I grep -i \.$ext"'''$''''
if (files != ") fgrep -in "$text" $files
popd -s

end

ts works by pushing the directory to be searched onto the directory stack, making it the
current disk and directory. Is and grep are used to recursively list all files (not directories)
anywhere in the tree that end with. ext where ext is whatever the caller requests.

Assuming there are some files, fgrep is used to search them, ignoring character case and
showing line numbers of any matches. (The if test is needed since calling fgrep without a
filename argument would cause it to try to read stdin.)

The text argument is inside double quotes in case the search text is more than one word.
The output can of course be piped to more:

% ts -\source c DoSWrite I more

duplicat: A procedure to print the list of all filenames that appear more than
once anywhere in a directory tree:

proc duplicat(startdir)
local i
foreach i ('ls -r $startdir':gt)

calc i
end I sort I uniq -d

end

duplicat works by making a list of the entire contents of the directory tree using Is. The
: gt operator means globally edit the list to trim each pathname down to just the tail part; e.g.,
given " X \y\ z. c", the tail is just "z. c".

The foreach loop writes each name out to the pipe, one per line. The sort obviously
sorts all the lines alphabetically and the uniq -d command gives just the duplicates. Here's an
example run against a very full 100MB HPFS partition:

% time duplicat h:\ > g:duplist
0:02:08.69

Page 31

Hamilton C shell Quick Reference

Sample Applications

Whereis.csh: A self-loading procedure to find all the files anywhere on the
search path corresponding to the command name, illustrating pattern matching
and file system tests.

proc whereis(name)
local if j
if (name =- "*.*") then

foreach i ($path)

end
else

if (i =- "*\") then
if (-e iname) echo iname

else
if (-e $i\$name) echo $i\$name

end

foreach i ($path)
if (i =- "*\") then

foreach j (.csh .exe .com .cmd)
if (-e iname$j) echo iname$j

end
else

foreach j (.csh .exe .com .cmd)
if (-e $i\$name$j) echo $i\$name$j

end
end

end
end

end

whereis $argv

Invoked as:

whereis ls

It would print:

c:\os2\bin\ls.exe

1 s . exe is the file directory lister. Invoked as:

time ls -1 'whereis more'

It would show the two versions of more. (Our more "is less filling and tastes
better.")

---A- Jun 19 10:00
---A- Apr 28 12:00
0:00:01.47

21897 f:\os2\hamilton\more.exe
34881 f:\os2\ibm\more.com

Page 32

•

"Indispensable. Easy to set up. Built to let experienced OS/2 users adapt
with little hassle. A comfortable mix of command history and editing using the
editing keys ... potent, capable ... much richer than its BSD Unix counterpart."

-- Tom Yager, BYTE Magazine, February 1990

"Much more powerful than CMD.EXE ... blindingly fast ... we have a winner
... a much-needed and well-done product."

-- Kenneth G. Goutal, Personal Workstation Magazine, September 1989

"Hamilton C shell is a killer shell-- an essential development tool. The
command line editing is just what I wanted. I use Hamilton C shell throughout
the day and recommend it highly."

-- Tracy Licklider

"A great set of software development tools. Your C shell becomes a part of
OS/2 instead of being an incomplete UNIX code port that does an injustice to
both operating systems. It's really nice using tools that were designed for OS/2.
Any OS/2 developer would appreciate the C shell. Keep up the good work."

-- P.M. Callihan, Duck Run Electronics

Hamilton C shell™

Customer comments:

"I'm very impressed with the product. We get flack from folks because we
aren't 'VNIX®-like,' when actually we are rather UNIX-like at the program
interface level; it's our user interface that's very un-UNIX-like. Your product not
only has its tangible benefits, but also some psychological ones as well.
Personally, I'd like to have a copy for my home machine."

-- Gordon Letwin

"Hamilton C shell is a hacker's dream - it makes all your other software tools
work faster and better. Hamilton has given us two-inch pipe where Microsoft
and IBM gave us quarter-inch; a full set of controls where they gave us an off
switch; and a Porsche engine where they gave us a VW."

-- Martin Heller, Software developer and OS/2® consultant

"A fine product. Outstanding command line editing and a complete set of
terrific utilities. No one should cripple OS/2 with little more than a DOS prompt
when they can have Hamilton C shell. Buy itl"

-- Dave Nanian, co-author of BRIEF

"Hamilton C shell outperforms CMD.EXE in terms of usefulness and
flexibility by 3 or 4 orders of magnitude and even blasts the BSD 4.3 C shell I've
been using on an Apollo Domain 4000 right out of the water."

-- Mark Montague, University of Michigan

"I found the Hamilton C shell to satisfy two needs. It saves time and it eased
my transition to an OS/2 environment. I use Hamilton C shell as a productivity
tool. I like to deal directly with a developer who cares a lot. Doug is very
cooperative and responsive."

-- Wayne Chin, Hewlett-Packard

"I use it all the time. My work requires me to use both UNIX and OS/2.
Hamilton C shell made learning OS/2 bearable and makes my work easier and
more enjoyable. It's one of the best products I've used. Am I getting my
money's worth? Yes!!"

-- Mark Sontz, Language Technology

Hamilton Laboratories, 13 Old Farm Road, Wayland, MA 01778,508-358-5715
Copyright © 1988 - 1990 by Hamilton Laboratories. All rights reserved. OS/2 is a registered trademark of International
Business Machines Corporation. UNIX is a registered trademark of AT&T. Hamilton C shell is a trademark of Hamilton
Laboratories.

	Hamilton C shell Quick Reference_Page_01
	Hamilton C shell Quick Reference_Page_02
	Hamilton C shell Quick Reference_Page_03
	Hamilton C shell Quick Reference_Page_04
	Hamilton C shell Quick Reference_Page_05
	Hamilton C shell Quick Reference_Page_06
	Hamilton C shell Quick Reference_Page_07
	Hamilton C shell Quick Reference_Page_08
	Hamilton C shell Quick Reference_Page_09
	Hamilton C shell Quick Reference_Page_10
	Hamilton C shell Quick Reference_Page_11
	Hamilton C shell Quick Reference_Page_12
	Hamilton C shell Quick Reference_Page_13
	Hamilton C shell Quick Reference_Page_14
	Hamilton C shell Quick Reference_Page_15
	Hamilton C shell Quick Reference_Page_16
	Hamilton C shell Quick Reference_Page_17
	Hamilton C shell Quick Reference_Page_18
	Hamilton C shell Quick Reference_Page_19
	Hamilton C shell Quick Reference_Page_20
	Hamilton C shell Quick Reference_Page_21
	Hamilton C shell Quick Reference_Page_22
	Hamilton C shell Quick Reference_Page_23
	Hamilton C shell Quick Reference_Page_24
	Hamilton C shell Quick Reference_Page_25
	Hamilton C shell Quick Reference_Page_26
	Hamilton C shell Quick Reference_Page_27
	Hamilton C shell Quick Reference_Page_28
	Hamilton C shell Quick Reference_Page_29
	Hamilton C shell Quick Reference_Page_30
	Hamilton C shell Quick Reference_Page_31
	Hamilton C shell Quick Reference_Page_32
	Hamilton C shell Quick Reference_Page_33
	Hamilton C shell Quick Reference_Page_34

